\(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx\) [49]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 32, antiderivative size = 109 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sqrt {b \sec (c+d x)} \sin (c+d x)}{b d} \]

[Out]

-2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)/
(b*sec(d*x+c))^(1/2)+2*C*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/b/d+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*
c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b/d

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {4132, 3856, 2720, 12, 16, 3853, 2719} \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sin (c+d x) \sqrt {b \sec (c+d x)}}{b d}-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(-2*C*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*B*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(b*d) + (2*C*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/(b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {B \int \sqrt {b \sec (c+d x)} \, dx}{b}+\int \frac {C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx \\ & = C \int \frac {\sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx+\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b} \\ & = \frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {C \int (b \sec (c+d x))^{3/2} \, dx}{b^2} \\ & = \frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sqrt {b \sec (c+d x)} \sin (c+d x)}{b d}-C \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx \\ & = \frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sqrt {b \sec (c+d x)} \sin (c+d x)}{b d}-\frac {C \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \\ & = -\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sqrt {b \sec (c+d x)} \sin (c+d x)}{b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.79 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.67 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\frac {2 \left (-C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {C \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*(-(C*EllipticE[(c + d*x)/2, 2]) + B*EllipticF[(c + d*x)/2, 2] + (C*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/(d*Sq
rt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.84 (sec) , antiderivative size = 460, normalized size of antiderivative = 4.22

method result size
parts \(-\frac {2 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )}{d \sqrt {b \sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}-\frac {2 C \left (i \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )+2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-\tan \left (d x +c \right )\right )}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}\) \(460\)
default \(-\frac {2 \left (i B \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-i C \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+i C \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+2 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-2 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+2 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )+i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-C \tan \left (d x +c \right )\right )}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}\) \(576\)

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*I*B/d*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)/(b*sec(d*x+c))^(1/2)/(cos(d*x+c)/(co
s(d*x+c)+1))^(1/2)-2*C/d/(cos(d*x+c)+1)/(b*sec(d*x+c))^(1/2)*(I*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(co
s(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)-I*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(
cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+2*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(co
s(d*x+c)+1))^(1/2)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)-2*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)+I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/
2)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)-I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*sec(d*x+c)-tan(d*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.31 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\frac {-i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} C \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} C \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, C \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{b d} \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*sqrt(b)*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*C*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*C*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*C*sqrt(b/cos(d*x + c))*sin(d*x + c))/(b*d)

Sympy [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)/sqrt(b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/sqrt(b*sec(d*x + c)), x)

Giac [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/sqrt(b*sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(1/2),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(1/2), x)